Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589567

RESUMO

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Assuntos
Hidrazinas , Neoplasias Renais , Triazóis , Tumor de Wilms , Humanos , 60611 , Transporte Ativo do Núcleo Celular , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Linhagem Celular Tumoral , Apoptose , Recidiva Local de Neoplasia , Doxorrubicina/farmacologia , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo
2.
Sci Transl Med ; 15(694): eabn9674, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134154

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is classified into two key subtypes, classical and basal, with basal PDAC predicting worse survival. Using in vitro drug assays, genetic manipulation experiments, and in vivo drug studies in human patient-derived xenografts (PDXs) of PDAC, we found that basal PDACs were uniquely sensitive to transcriptional inhibition by targeting cyclin-dependent kinase 7 (CDK7) and CDK9, and this sensitivity was recapitulated in the basal subtype of breast cancer. We showed in cell lines, PDXs, and publicly available patient datasets that basal PDAC was characterized by inactivation of the integrated stress response (ISR), which leads to a higher rate of global mRNA translation. Moreover, we identified the histone deacetylase sirtuin 6 (SIRT6) as a critical regulator of a constitutively active ISR. Using expression analysis, polysome sequencing, immunofluorescence, and cycloheximide chase experiments, we found that SIRT6 regulated protein stability by binding activating transcription factor 4 (ATF4) in nuclear speckles and protecting it from proteasomal degradation. In human PDAC cell lines and organoids as well as in murine PDAC genetically engineered mouse models where SIRT6 was deleted or down-regulated, we demonstrated that SIRT6 loss both defined the basal PDAC subtype and led to reduced ATF4 protein stability and a nonfunctional ISR, causing a marked vulnerability to CDK7 and CDK9 inhibitors. Thus, we have uncovered an important mechanism regulating a stress-induced transcriptional program that may be exploited with targeted therapies in particularly aggressive PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Sirtuínas , Humanos , Camundongos , Animais , Quinases Ciclina-Dependentes , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Sirtuínas/genética , Sirtuínas/uso terapêutico , Neoplasias Pancreáticas
3.
Elife ; 82019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30860482

RESUMO

Renal medullary carcinoma (RMC) is a rare and deadly kidney cancer in patients of African descent with sickle cell trait. We have developed faithful patient-derived RMC models and using whole-genome sequencing, we identified loss-of-function intronic fusion events in one SMARCB1 allele with concurrent loss of the other allele. Biochemical and functional characterization of these models revealed that RMC requires the loss of SMARCB1 for survival. Through integration of RNAi and CRISPR-Cas9 loss-of-function genetic screens and a small-molecule screen, we found that the ubiquitin-proteasome system (UPS) was essential in RMC. Inhibition of the UPS caused a G2/M arrest due to constitutive accumulation of cyclin B1. These observations extend across cancers that harbor SMARCB1 loss, which also require expression of the E2 ubiquitin-conjugating enzyme, UBE2C. Our studies identify a synthetic lethal relationship between SMARCB1-deficient cancers and reliance on the UPS which provides the foundation for a mechanism-informed clinical trial with proteasome inhibitors.


Assuntos
Carcinoma Medular/genética , Neoplasias Renais/genética , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/farmacologia , Proteína SMARCB1/genética , Alelos , Animais , Sistemas CRISPR-Cas , Carcinoma Medular/tratamento farmacológico , Ciclo Celular , Linhagem Celular Tumoral , Exoma , Feminino , Humanos , Hibridização in Situ Fluorescente , Rim/metabolismo , Neoplasias Renais/tratamento farmacológico , Camundongos , Camundongos Nus , Mutação , Transplante de Neoplasias , Interferência de RNA , Análise de Sequência de RNA , Ubiquitina/química , Sequenciamento Completo do Genoma
4.
Mol Cancer Res ; 17(6): 1294-1304, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30777879

RESUMO

Focal amplification of chromosome 1q23.3 in patients with advanced primary or relapsed urothelial carcinomas is associated with poor survival. We interrogated chromosome 1q23.3 and the nearby focal amplicon 1q21.3, as both are associated with increased lymph node disease in patients with urothelial carcinoma. Specifically, we assessed whether the oncogene MCL1 that resides in 1q21.3 and the genes that reside in the 1q23.3 amplicon were required for the proliferation or survival of urothelial carcinoma. We observed that suppressing MCL1 or the death effector domain-containing protein (DEDD) in the cells that harbor amplifications of 1q21.3 or 1q23.3, respectively, inhibited cell proliferation. We also found that overexpression of MCL1 or DEDD increased anchorage independence growth in vitro and increased experimental metastasis in vivo in the nonamplified urothelial carcinoma cell line, RT112. The expression of MCL1 confers resistance to a range of apoptosis inducers, while the expression of DEDD led to resistance to TNFα-induced apoptosis. These observations identify MCL1 and DEDD as genes that contribute to aggressive urothelial carcinoma. IMPLICATIONS: These studies identify MCL1 and DEDD as genes that contribute to aggressive urothelial carcinomas.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Urotélio/metabolismo , Urotélio/patologia , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Progressão da Doença , Feminino , Humanos , Camundongos
5.
Nat Commun ; 7: 11987, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27329820

RESUMO

Identifying therapeutic targets in rare cancers remains challenging due to the paucity of established models to perform preclinical studies. As a proof-of-concept, we developed a patient-derived cancer cell line, CLF-PED-015-T, from a paediatric patient with a rare undifferentiated sarcoma. Here, we confirm that this cell line recapitulates the histology and harbours the majority of the somatic genetic alterations found in a metastatic lesion isolated at first relapse. We then perform pooled CRISPR-Cas9 and RNAi loss-of-function screens and a small-molecule screen focused on druggable cancer targets. Integrating these three complementary and orthogonal methods, we identify CDK4 and XPO1 as potential therapeutic targets in this cancer, which has no known alterations in these genes. These observations establish an approach that integrates new patient-derived models, functional genomics and chemical screens to facilitate the discovery of targets in rare cancers.


Assuntos
Quinase 4 Dependente de Ciclina/genética , Carioferinas/genética , Doenças Raras/genética , Receptores Citoplasmáticos e Nucleares/genética , Sarcoma/genética , Células A549 , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sistemas CRISPR-Cas , Ciclo Celular , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Ensaios de Seleção de Medicamentos Antitumorais , Exoma , Feminino , Genômica , Humanos , Hidrazinas/administração & dosagem , Camundongos , Camundongos Nus , Metástase Neoplásica , Recidiva Local de Neoplasia , Transplante de Neoplasias , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Interferência de RNA , Doenças Raras/tratamento farmacológico , Sarcoma/tratamento farmacológico , Análise de Sequência de RNA , Triazóis/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...